
1.
2.
3.
4.

5.

6.

7.

8.

9.

ECHO Client Partner User Guide - Chapter 4
Querying for Earth Science Metadata

Formatting Your Query Results
Handling Large Result Sets
Visibility of Results

Restricted Items
Deleted Items
Querying for Orderable Data

Searching for Orbit Data
Backtrack orbit model
Orbit data representation
How ECHO Searches for Orbit Data

Sample queries

Guide Navigation

Preface
Before you begin
The basics
Logging in, setting
up and getting
started
Querying for Earth
Science metadata
The ECHO
Alternative Query
Language
Ordering data
through ECHO
Metadata
subscriptions
Appendices

Querying for Earth Science Metadata

ECHO uses the for its querying capabilities (See Chapter 6 for a detailed explanation of theECHO Alternative Query Language (AQL) .
language syntax.) To support potentially large queries, ECHO handles a query expression without regard to the details of whether and how it
will return query results to the user.
An ECHO query consists of a query expression specified in XML, starting with <query>. All AQL queries must conform to the
AQLQueryLanguage.dtd available on the ECHO website. Also, refer to Chapter 6, The ECHO Alternative Query Language for additional
information about AQL.

You may use the optional argument to limit the numbers of results returned from a query, which is useful when a query producesMaxResults
more data than can be processed. This also saves processing time for the query and presentation of results.
You may retrieve the results of a query in several different ways. The operation on the Catalog Service allows you to indicateExecuteQuery
whether you would like the data itself returned or simply the number of hits. When doing so, ensure that the tag is returned.CatalogItemID
The string value under this tag is the actual catalog item GUID that you can use to order items from ECHO. You can specify this function in
the argument with one of the following values:ResultType

Table 2: Query Return Result Types

Value Description

RESULTS Returns the detailed metadata for items that match the query directly in the response. When using this option, you
may choose to limit the actual metadata values returned. In addition, ECHO will return a result set identifier
(ResultSetGUID) for subsequent retrievals of the results or for paging through the result list. Note that ECHO

 The complete results are stored inOperations limits the maximum number of items returned to 2,000 at a time.
your result set which you can retrieve by using the GetQueryResults operation.

You should validate your query against the DTD before passing it to ECHO. Since a query is passed to ECHO as a string, the
query will not be validated against the DTD by the Web Service processing layer but rather at execution time, which, in the case of
an asynchronous query or a subscription, could be after the Web Service call has completed.

https://wiki.earthdata.nasa.gov/display/echo/ECHO+Client+Partner+User+Guide+-+Preface
https://wiki.earthdata.nasa.gov/display/echo/ECHO+Client+Partner+User+Guide+-+Chapter+1
https://wiki.earthdata.nasa.gov/display/echo/ECHO+Client+Partner+User+Guide+-+Chapter+2
https://wiki.earthdata.nasa.gov/display/echo/ECHO+Client+Partner+User+Guide+-+Chapter+3
https://wiki.earthdata.nasa.gov/display/echo/ECHO+Client+Partner+User+Guide+-+Chapter+3
https://wiki.earthdata.nasa.gov/display/echo/ECHO+Client+Partner+User+Guide+-+Chapter+3
https://wiki.earthdata.nasa.gov/display/echo/ECHO+Client+Partner+User+Guide+-+Chapter+5
https://wiki.earthdata.nasa.gov/display/echo/ECHO+Client+Partner+User+Guide+-+Chapter+5
https://wiki.earthdata.nasa.gov/display/echo/ECHO+Client+Partner+User+Guide+-+Chapter+5
https://wiki.earthdata.nasa.gov/display/echo/ECHO+Client+Partner+User+Guide+-+Chapter+6
https://wiki.earthdata.nasa.gov/display/echo/ECHO+Client+Partner+User+Guide+-+Chapter+6
https://wiki.earthdata.nasa.gov/display/echo/ECHO+Client+Partner+User+Guide+-+Chapter+7
https://wiki.earthdata.nasa.gov/display/echo/ECHO+Client+Partner+User+Guide+-+Chapter+7
https://wiki.earthdata.nasa.gov/display/echo/ECHO+Client+Partner+User+Guide+Appendices

RESULT_SET_GUID Returns the result set guid of the results that are stored on the server. ECHO will generate a result set but will not
return any results. You must subsequently retrieve the results using the GetQueryResults operation.

HITS Returns the number of hits (matches) to the query and a ResultSetGUID for the results stored on the server. ECHO
will generate a result set but will not return any results. The number of records may be a statistically determined for
large result sets. You must subsequently retrieve the results using the GetQueryResults operation. Hits is a
relatively expensive operation therefore if the client only needs to know if some data exists, it is faster to simply
query for ITEM_GUIDS with a small iterator size.

ITEM_GUIDS Returns the Catalog Item GUIDs that match the specified query. Note: No ResultSetGUID is returned since results
do not persist in the system.

All the GUIDs of the granules/collections that satisfy the query are returned to the client. It is the client‘s
responsibility to request the metadata for each individual granule/collection using the GetCatalogItemMetadata
operation discussed later.

Formatting Your Query Results

You can specify a subset of the information in the result set by using different parameters for the operations
 and . ExecuteQuery GetQueryResults

The following elements are used to specify the format and content of a result set:

Table 3: Result Set Content Elements

Argument Description

IteratorSize Specifies the number of results to be returned from a single operation. This does not limit the number of items a query
may match (see MaxResults) but limits to 2,000 the number of matching items returned in the result set, starting from
the Cursor position.

This field is only used if the result type is set to RESULTS.

Cursor Specifies the index of the first record to be returned in the result set. For example, a value of 5 will return results
starting from the fifth record. If none is specified, it defaults to 1. If you repeat the same query later, use the same
Cursor value.

This field is only used if the result type is set to RESULTS.

MetadataAttributes Specifies which fields of the ECHO Metadata you actually want to return. By only requesting the parts of the metadata
you are interested in, you can increase query performance substantially. By default, ECHO returns all of the metadata
for each item.

This field is only used if the result type is set to RESULTS.

Metadata results are returned as XML that conforms to one of the following DTDs:

Granule metadata conforms to the Granule Results DTD—refer to Appendix F, Results DTDs (also located at: http://api.echo.nasa.gov/echo/
).dtd/ECHOGranuleResults.dtd

Collection metadata conforms to the Collection Results DTD Appendix F, Results DTDs (also located at: http://api.echo.nasa.gov/echo/dtd/E
). CHOCollectionResults.dtd

Metadata attributes are made up of two values: the XML metadata attribute name and a primitive type name. ECHO currently ignores the
 The allowable metadata attribute names are specified in the appropriate DTD (ECHOGranuleResults.dtd for granules andtype name.

ECHOCollectionResults.dtd for collections). If you specify a metadata attribute name that has sub-attributes, all of the sub-attributes will be
included as well. For example, if you specify , the following elements will be included in the metadata:Platform

Platform

PlatformShortName

Instrument

InstrumentShortName

http://api.echo.nasa.gov/echo/dtd/ECHOGranuleResults.dtd
http://api.echo.nasa.gov/echo/dtd/ECHOGranuleResults.dtd
http://api.echo.nasa.gov/echo/dtd/ECHOCollectionResults.dtd
http://api.echo.nasa.gov/echo/dtd/ECHOCollectionResults.dtd

Sensor

SensorShortName

SensorCharacteristics

SensorCharacteristicName

SensorCharacteristicValue

OperationMode
When you specify a sub-attribute, ECHO will return the parent attribute in the hierarchy as well as the sub-attribute. This allows you to ensure
that data are correctly scoped. For example, if you specify , the following elements will be included in the metadata:Sensor

Platform
PlatformShortName
Instrument
InstrumentShortName
GranuleUR
GranuleURMetaData

Detailed spatial attributes cannot be used as MetadataAttributes; only their containing element may be specified. For example, you
cannot use as a MetadataAttribute, but you can use . The following spatial elementsBoundingBox HorizontalSpatialDomainContainer
cannot be specified as MetadataAttributes:

Point
Circle
BoundingRectangle
GPolygon
Polygon
PointLongitude
PointLatitude
CenterLongitude
CenterLatitude
Radius
WestBoundingCoordinate
NorthBoundingCoordinate
EastBoundingCoordinate
SouthBoundingCoordinate
Boundary
ExclusiveZone
SinglePolygon
MultiPolygon
OutRing
InnerRing

Specifying GranuleURMetaData as a MetadataAttribute is equivalent to not specifying any MetadataAttributes; the result set includes all the
elements in the result DTD.
The following code snippet shows how to execute a query for all of the metadata for matching items.

Code Listing 6: Executing a Simple Query

// Execute a query to get results
QueryResponse response = catalogService.executeQuery(userToken,
queryString, ResultType.RESULTS,
 10, // Iterator
 0, // Cursor
 3000, // max results
 null); // no metadata attributes specified

MetadataAttribute[] attributes = new MetadataAttribute[] { new
MetadataAttribute(
 "HorizontalSpatialDomainContainer", null) };

QueryResponse response = catalogService.executeQuery(userToken,
queryString, ResultType.RESULTS,
 10, // Iterator
 0, // Cursor
 3000, // max results
 attributes);

Handling Large Result Sets

Given ECHO's large store of Earth Science data, it is possible for queries to return very large result sets. ECHO supports retrieving the results
from a query in a number of ways. The simplest is to ask ECHO to return the results directly from the request by passing ExecuteQuery RES

 as the . However, to prevent a single query from monopolizing ECHO resources, ECHO limits the number of resultsULTS ResultType
available in response to a query. By default, this limit is 2,000 items. ECHO Operations may change this limit depending on ECHO usage
patterns.
For larger results, ECHO supports a paging mechanism. This allows you to page through the available data in page sizes that you select (up
to the ECHO Operations configurable limit). For all ECHO will create and store a result set and return the corresponding GUID.ResultTypes
You can page through the result set using the operation. The arguments to are similar to GetQueryResults GetQueryResults ExecuteQuer

 with the exception that you specify the result set GUID rather than a new query. y
Result sets may change after they are created. Providers are continually changing the data they have registered in ECHO. New records may
appear or may be removed from a result set. Because of this, you should watch the fields and when paging through aCursor CursorAtEnd
large result set:

 specifies the index of the first record to be returned in the result set. For example, a value of 5 will return results starting from the fifthCursor
record. If none is specified, it defaults to 1. If you repeat the same query later, use the same Cursor value.
Use to determine when you have reached the end of the result set. This Boolean field is TRUE if the returned results were theCursorAtEnd
last available results in the result set.
The following code illustrates paging through a result set and displaying it to the user.

Code Listing 8: Paging Through Query Results

final int ITERATOR_SIZE = 10;
try
 {
 CatalogServiceLocator catalogServiceLocator = new
CatalogServiceLocator();
 CatalogServicePort catalogService =
catalogServiceLocator.getCatalogServicePort();
 QueryResponse response = catalogService.executeQuery(userToken,
userQuery,
 ResultType.RESULT_SET_GUID, 0, 0, 1000, null);
 String resultSetGuid = response.getResults().getResultSetGuid();
 // begin paging through results
 int cursor = 1;
 boolean atEnd = false;
 while (!atEnd)
 {
 //Get next ITERATOR_SIZE results
 QueryResults results =
catalogService.getQueryResults(userToken,
 resultSetGuid, null, ITERATOR_SIZE, cursor);
 //Print out results
 System.out.println(results.getReturnData());
 //Set cursor to next index
 cursor = results.getCursor();
 //Check if at end of result set
 atEnd = results.isCursorAtEnd();
 }
 System.out.println("All results retrieved");
 }
 catch (EchoFault e)
 {
 e.printStackTrace();
 }
 catch (ServiceException e)
 {
 e.printStackTrace();
 }
 catch (RemoteException e)
 {
 e.printStackTrace();
 }

Like ExecuteQuery, GetQueryResults takes an array of MetadataAttributes. Internally ECHO only stores in a result set the
item IDs that match a given query. This means that you may pull different metadata from a single result set with each call by
varying what you pass to the MetadataAttribute array without needing to re-query ECHO. It is highly recommended you use
the MetadataAttribute array to restrict the information ECHO returns and thus improve performance.

Visibility of Results

When you execute a query, the query is applied to all the data in ECHO. However, when the results are retrieved, you may not see all of the
items. What you can see depends on the rules defined by the Data Partners and the privileges granted to you.

Restricted Items

If a particular item in your result set is restricted for you (i.e., you are allowed to see it), based on your privileges, it will not be returned.not

Deleted Items

It is possible that between the time you execute a query and the time you view the results some of the matched items may have been deleted
from ECHO or restricted due to a request from the Data Partner who owns the metadata. In that case, the item will not be returned in your
result set. For more information about notification of deleted or restricted order items, refer to section 7.8.1, Restricted or Deleted Order
Items.

Querying for Orderable Data

Since ECHO 9.0, you have been able to exclude from your query data that cannot be ordered. Refer to section 1.1.1

Searching for Orbit Data

4.4.1 Backtrack Orbit Search Algorithm
Orbit searching is by far the most accurate way to search for level 0-2 orbital swath data. Unfortunately orbital mechanics is a quite difficult
field, and the most well known orbit model, the NORAD Propagator, is quite complex. The NORAD Propagator is designed to work with a
wide range of possible orbits, from circular to extremely elliptical, and consequently requires quite a bit of information about the orbit to model
it well.
To facilitate earth science, the orbits of satellites gathering earth science data are quite restricted compared to the variety of orbits the
NORAD Propagator is designed to work with. Generally, the earth science community would like global coverage, with a constant field of
view, at the same time every day. For this reason, most earth science satellites are in a sun-synchronous, near-polar orbit. Even missions
that are not interested in global coverage, e.g., the Tropical Rainfall Measuring Mission (TRMM), are still interested in having a constant field
of view so the coverage of the sensor is at a constant resolution. For this reason, ALL earth science satellites are in circular orbits.
The Backtrack Orbit Search Algorithm, designed and developed by Ross Swick, exploits this fact to simplify the orbit model by modeling an
orbit as a great circle under which the Earth rotates. This reduces the number of orbital elements required for the model from 22 to three.
Moreover, the NORAD Propagator is designed to predict future orbits based on current status, and consequently must be reinitialized
periodically to correct for cumulative error as the model spins forward. As the name implies Backtrack spins the orbit backwards, and in
practice spins backwards at most one orbit, so there is no cumulative error.

For more information on Backtrack, please see http://geospatialmethods.org/bosa/.

Figure 2. Typical Orbit Path Represented on a Globe and the same Path on a Map

Backtrack orbit model

http://geospatialmethods.org/bosa/
http://geospatialmethods.org/bosa/

1.
2.
3.

1.
2.
3.

Three parameters to define an orbit:

Instrument swath width (in kilometers)
Satellite declination or inclination (in degrees)
Satellite period (in minutes)

Orbit data representation

Three parameters to represent orbit data:

Equatorial crossing longitude
Start circular latitude (or start latitude and start direction)
End circular latitude (or end latitude and end direction)

How ECHO Searches for Orbit Data

The user specifies a regular spatial window

Figure 3. Spatial Window

<granuleCondition>
 <spatial>
 <IIMSPolygon>
 <IIMSLRing>
 <IIMSPoint lon="-90" lat="49" />
 <IIMSPoint lon="-90" lat="39" />
 <IIMSPoint lon="-70" lat="39" />
 <IIMSPoint lon="-70" lat="49" />
 <IIMSPoint lon="-90" lat="49" />
 </IIMSLRing>
 </IIMSPolygon>
 <SpatialType>
 <list>
 <value>ORBIT</value>
 </list>
 </SpatialType>
 </spatial>
</granuleCondition>

Backtrack then calculates from both ascending and descending a path for equatorial longitude crossings and start/end circular
latitudes according to user's query window

Sample queries

The following are sample queries that you can execute against ECHO. Note that the provider and the datasets used in these samples are
representative only; you should modify the query to suit your needs.

Code Listing 9: Sample Collection Query (Discovery Search)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE query PUBLIC "-//ECHO CatalogService (v{*}10{*})//EN"
"http://api.echo.nasa.gov/echo/dtd/IIMSAQLQueryLanguage.dtd">
<!- Search for collections from ORNL_DAAC that have parameter value that
contains 'IMAGERY'-->
<query>
 <for value="collections"/>
 <dataCenterId>
 <list>
 <value>ORNL_DAAC</value>
 </list>
 </dataCenterId>
 <where>
 <collectionCondition>
 <parameter>
 <textPattern>'%Imagery%'</textPattern>
 </parameter>
 </collectionCondition>
 </where>
</query>

Code Listing 10: Sample Collection Query from Two Providers (Discovery Search)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE query PUBLIC "-//ECHO CatalogService (v{*}10{*})//EN"
"http://api.echo.nasa.gov/echo/dtd/IIMSAQLQueryLanguage.dtd">
<!-- Search for collections from GSFCECS and ORNL_DAAC that have
processing level 1A or 2 -->
<query>
 <for value="collections"/>
 <dataCenterId>
 <list>
 <value>GSFCECS</value>
 <value>ORNL_DAAC</value>
 </list>
 </dataCenterId>
 <where>
 <collectionCondition negated="y">
 <processingLevel>
 <list>
 <value>'1A'</value>
 <value>'2'</value>
 </list>
 </processingLevel>
 </collectionCondition>
 </where>
</query>

Code Listing 11: Sample Collection Query with Temporal and Spatial Constraints

(Discovery)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE query PUBLIC "-//ECHO CatalogService (v{*}10{*})//EN"
"http://api.echo.nasa.gov/echo/dtd/IIMSAQLQueryLanguage.dtd">
<!-- Search for collections from ORNL_DAAC with: temporal range:
periodic range between Jan 1, 1990 and Dec. 31 1998from the 1st to the
300th day of each year, AND spatial extent: bounding box 60S, 70W to
60N, 70E. -->
<query>
 <for value="collections"/>
 <dataCenterId>
 <value>ORNL_DAAC</value>
 </dataCenterId>
 <where>
 <collectionCondition>
 <temporal>
 <startDate>
 <Date YYYY="1990" MM="01" DD="01"/>
 </startDate>
 <stopDate>
 <Date YYYY="1998" MM="12" DD="31"/>
 </stopDate>
 <startDay value="1"/>
 <endDay value="300"/>
 </temporal>
 </collectionCondition>
 <collectionCondition negated="n">
 <spatial operator="RELATE">
 <IIMSPolygon>
 <IIMSLRing>
 <IIMSPoint long='-10' lat='85'/> <IIMSPoint long='10' lat='85'/>
<IIMSPoint long='10' lat='89'/> <IIMSPoint long='-10' lat='89'/>
<IIMSPoint long='-10' lat='85'/>
 </IIMSLRing>
 </IIMSPolygon>
 </spatial>
 </collectionCondition>
 </where>
</query>

Code Listing 12: Sample Collection Query with Complex Temporal and Spatial Conditions

(Discovery)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE query PUBLIC "-//ECHO CatalogService (v{*}10{*})//EN"
"http://api.echo.nasa.gov/echo/dtd/IIMSAQLQueryLanguage.dtd">
<!-- Search for collections from ORNL_DAAC with
temporal range: periodic range between Jan 1, 1990 and Dec. 31 1998 from
the 1st to the 300th day of each year, AND
some days of January. source name: L7 or AM-1 AND
spatially covering any 'temperate' region or USA -->
<query>
 <for value="collections"/>
 <dataCenterId>
 <list>
 <value>ORNL/value>
 </list>
 </dataCenterId>
 <where>
 <collectionCondition>
 <temporal>
 <startDate>
 <Date YYYY="1990" MM="01" DD="01"/>
 </startDate>
 <stopDate>
 <Date YYYY="1998" MM="12" DD="31"/>
 </stopDate>
 <startDay value="1"/>
 <endDay value="300"/>
 </temporal>
 </collectionCondition>
 <collectionCondition negated='n'>
 <sourceName>
 <list>
 <value>'L7'</value>
 <value>'AM-1'</value>
 </list>
 </sourceName>
 </collectionCondition>
 <collectionCondition>
 <spatialKeywords>
 <list>
 <value>'temperate'</value>
 <value>'USA'</value>
 </list>
 </spatialKeywords>
 </collectionCondition>
 <collectionCondition>
 <temporalKeywords>
 <textPattern>'%january%'</textPattern>
 </temporalKeywords>
 </collectionCondition>
 </where>
</query>

Code Listing 13: Sample Collection Query Using Provider Specific Attributes (Discovery)

<?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE query PUBLIC "-//ECHO CatalogService (v10)//EN"
"http://api.echo.nasa.gov/echo/dtd/IIMSAQLQueryLanguage.dtd">
 <query>
 <for value="collections"/>
 <dataCenterId>
 <value>ORNL_DAAC</value>
 </dataCenterId>
 <where>
 <collectionCondition>
 <additionalAttributeNames>
 <list>
 <value>'Provider_Specific_Attribute_1'</value>
 <value>'Provider_Specific_Attribute_3'</value>
 </list>
 </ additionalAttributeNames >
 </collectionCondition>
 </where>
 </query>

	ECHO Client Partner User Guide - Chapter 4

